
Carnegie Institute of T echnolrgy

GRADUATE SCHOOL of INDUSTRIAl ADMI ISTRA TION

R produced by the
CLEAR I N G HOUSE

lex Federal Sctentahc & T echnteal
ln1cxmalton Sprtngfteld Va 22151

1

Managanent Sciences Research No. 103

1/
ON SOME SEQUENCING PROBUSMS

by

Wlodzimierz Szwarc

June, 1967

1/ From Przeglad Statystyczny Vol. IX No. 4 (1962) pp. 367-382
and Vol. X No. 1 (1963) pp. 139-154. Translated by the author with
editorial assistance and suggestions from W. W. Cooper for th<

Management Sciences Research Group. Acknowledgment is gracefully made
to Professor Cooper for his many helpful suggestions and comments.

* Technical University, Wroclaw, Poland and International Center of
Operations Research and Econometrics (CORE) University of Louvain,
Belgium.

MANAGEMENT SCIENCES RESEARCH GROUP
GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION

CARNEGIE INSTITUTE OF TECHNOLOGY
PITTSBURGH, PENNSYLVANIA 15213

J

1. Introduction;

Consider the following problem, which Is one of the classical sequencing

problems: We are to produce on m machines one single aggregate consisting

of n different Items each of which is to be operated on by some or by all

of the machines. The order of processing each Item through the machines Is

given. We are also given the operation time for each Item on each machine.

It Is assumed that at any moment:

1°. No machine Is able to handle more than one item

2°. No Item can be operated on by more than one machine.

Given the operating time for each item on each machine the problem is to

find a production program which will be called optimal program for producing

the aggregate In a minimal time.

This problem was considered by S. B. Akers and I. Friedman in [1] where

they presented a solution method for the mx2 case. For the general mxn

case (m-raachlnes, n-ltems) these authors gave a criterion which enables

to check whether a program is feasible or non feasible. To solve the mxn

case one must first consider all programs. Then,applying the Akers-Friedman

rule, all non feasible ones are removed and then finally the optimal solu-

tion is found by examining each of the remaining programs.

This method is laborious, even for moderate values of m and n, although

It should also be noted that its authors supply additional advice on how

to remove non optimal plans for the nix2 case. Even so the number of

remaining feasible programs to consider is still large. By means of i

graphical approach, presented In [2], Akers provides an approximate method

of solving the mx2 case. This was subsequently elaborated in [9] where,

using Akers' graphical approach,I was able to solve the mx2 problem and

ra

-2-

in this same reference I also supplied an approximate method for solving the
1/

mxn case. R. Bellman [3] and S. M. Johnson [7] independently solved the

2xn case on the assumption that the same order of processing the items

through two machines, say A and B, is used. On this assumption Johnson also

solved the 3xn problem for two special cases. L. G. Mitten [8] solved a

generalization of the Bellman -Johnson 2xn problem while maintaining assump-

tion 1 , as above, plus the condition in which there are upper limits on the

length of time for each item from the moment it starts on machine A until it

is finished on machine B.

All of the methods mentioned above for solving the sequencing problem

are combinatorial in nature.

After 1958 when R. E. Gomory [6] first published a method for solving the

integer programming problem, papers appeared which treated this sequencing

problem as a special case of an integer programming problem. These cases,

however, involved introducing a considerable number of variables and con-

straints. For instance, E. H. Bowman in [4], solving a 4x3 problem by the

integer programming method, deals with at least 300 variables and even more

constraints. Several authors (e.g., G. B. Dantzig [5], H. M. Wagner [10])

then tried to find an integer programming formulation of this problem which

would require a smallest possible amount of variables and constraints.

This paper presents solutions to the following problems.

1. A generalization of the 2xn Bellman-Johnson problem where the pro-
cessing order of the items is not the same.

2. The 3xn Bellman-Johnson problem for several new special cases.

3. The 2xn Bellman-Johnson case where each item already operated on by
machine A must wait until it starts on machine B.

"1

i

•^This method may sometimes not work at all in the sense that it may
lead to a program which is unfeasible.

-W"

-3-

In the first sections we present (without proof) the methods of solution to

the following problems.

1. 2xn and 3xn Bellman-Johns on case (Johnson's method)

2. The mx2 Akers-Friedman problem (solved by the author of this paper)

The final section of the paper then presents cases for which the method for

solving the mxn case as given in [9] is an exact method of solution.

Remark: The same symbols appearing in different sections of this
paper may have different meanings.

2. Solution of the 2xn and 3xn Bellman-Johnson Case.

We Illustrate the solution method by an example: There are two machines,

A and B, and five items, which we denote by the numbers 1 through 5. Each of

the items is first operated on by machine A and then by machine B. The

operating times are given In table 1.

Table 1

A, B, E.

1

2

3

4

5

3 4-1

5 2 3

4 1 3

6 4 2

2 5-3

Hence, for instance, B^l means that the operating time for item 3 on

machine B is equal to one unit of time. The numbers E. in the last

column are equal to A,-B,.

.AAM^t

fßd

■ '(■

-4- -I

Each working (and also each optimal) program is determined when we know

in which order the items pass each machine. Johnson showed that to find an

optimal program (also in the 3xn case) one may consider only programs

where the processing order for both machines is the same. However, there

exist optimal programs which do not possess this property.

The problem reduces to that of finding a processing sequence -- a

permutation of n numbers l,...,n — corresponding to the optimal program.

Divide the set (l,...,n) into two disjoint subsets s and s', where

s = {(i) | Ei < 0] and s' - {(i) | E1 ^ 0)

Let s and s' be sets of t and n-t elements respectively (0 <[-t ;£ n).

The method of constructing the optimal sequence is as follows: Order the

elements l,...,n so that in the sequence

a) the elements of s appear before the elanents of s*

b) the corresponding numbers A form a nondecreaslng sequence

for ies and a nonincreasing sequence for ies'.

In our example s - (1,5), s* « (2,3,4). Using the rules a and b which

were Just given, it is easy to establish the optimal sequence, which is

(5,1,4,2,3). Figure 1 presents the optimal operation program corresponding

to the sequence (5,1,4,2,3).

Remark; The numbers shown in Figure 1 denote items

j t A .5.1.4.2.3

B • .,5,1 , 4 ,& »3

Figure 1

'▼T

■5-

The minimal operating time necessary to produce the aggregate is equal
5 5

to 21 units (Z A. + 1, or Z ß. + 5), where the numerical values 1 and 5
i-1 1 i-1 1

denote idle time for machines A and B respectively.

In [7] Johnson also solved the 3xn case where the processing order for

all the items is A, B, C, and where for all i, j-1,2,... ,n: or B < A
J

or B. < C .

Consider a 3x7 example with the following table of operation times.

Table 2

1

2

3

4

5

6

7

B, C1 Ai+Bi B1+C1

6 2 3 8 5

7 2 4 9 6

9 6 7 U 13

8 6 2 14 8

6 4 3 10 7

10 2 5 12 7

9 1 2 10 3

Ae can be seen, here have the case B. < A.. One now finds the optimal

sequence by applying the method from the 2xn case for two fictitious machines,

M and N, with operating times obtained from the expression M "A +B., N -B.+C .

In this example s is an empty set (all M -N. are positive)»

so s* - (1,2 7). Ordering the numbers N in a nondecreasing sequence

we get two optimal sequences -- viz. , (3,4,5,6,2,1,7) and (3,4,6,5,2,1,7).

iaii-fc^

-6-

3 Solution of the mx2 and mxn Akers-Friedman Problem.

We again illustrate the solution method by means of a 5x2 example.

The passing order as well as the operation times are as follows:

Item 1 ~ A5
B

2
CVE

3

Item 2 — AVEVB
2

Consider an xOy coordinate system where the x-axis coresponds to Item 1

and the y-axis to Item 2. Construct a rectangle PMJN where

PN - A1+B1+C1+D1+E1 - 5+2+4fl+3 » 15

and
PM - AJ+BJ+CJ+DJ+EJ - 4f2+2+2+1 - 11

Assign to machines the following "vertical" areas in ABCDE order

0 <£ x ^ 5 to machine A

5 < x ^ 7 to B

7 ^ x < 11 to C

11 < x < 12 to D

12 < x <; 15 to E

Assign to machines the "horizontal" areas in a ACEDB order

0 < y < ^ to machine A

4 < y < 6 to C

6 < Y < 7 to E

7 < y < 9

9^y ^ 11

to

to

D

B

To each machine there corresponds a rectangle am determined by the intersec-

tion of the horizontal and vertical intervals that were associated with this

machine. E.g., to machine C there corresponds the rectangle: 7 £ x < 11,

4 < x < 6.

.1

■VT-

-7-

One may now describe each program by a continuous line with the

following properties:

1. Points P and Q are on this line

2. The line does not cross any of the rectangles A,BfC,D,E.

3. The line consists of straight line segments which are either
parallel to one of the axes or else forming a 45° angle with
the x-axis.

The total length of all vertical (horizontal) segments is the total waiting

time for Item 1 (2). The total length of the projections on either axis

of the 45° segments is the total time when both items are operated on

simultaneously (but on different machines).

The problem reduces to that of finding a line with minimal total length

for the vertical segments. Alternatively, however, one may look for a line

where the total length of the horizontal segments is minimal or, Instead,

one may search for a line with maximal total length for the 45° segments.

All of these problems are equivalent.

Let us Introduce the following definitions and notations. By a node we

mean a north-west and south-east corner of each rectangle and also points

P and Q. Consider two nodes w. » (Xj.yj) and w. - (xj^) such that

x. ^ x2 and y. < y_ (so w. cannot be on the right of or above w»). We

say that node w. is neighboring to w. If one can link these nodeq by a

line with the properties 2 and 3 specified above.

Let w be a neighboring node to w». We define a distance, d(w W2)

as follows.

d(w1w2) - max [0, (yj-y^ " (x2 "xi^

h a>ai -"-"-

-8-

ii
Let TT(W) be the set of nodes such that w is neighboring to each element of J

i

TT(W). The nodes of n(w) lie in a rectangle whose corners are points

w and Q.

Consider the set of all lines which have properties 2 and 3 linking

w and Q. By a length of each such line we mean the total length of all of

its vertical segments. In this set there exists a line of minimal length.

Let f(w) be the length of this line. Then the following is true

f(w) - min_ [d(w,w) + f(w)]. (2)
w CTTCW)

We arrange the nodes so that their x coordinates form a nonincreasing

sequence. Nodes which have the same x-coordlnate we arrange in such a way

that their ycoordinates form a decreasing sequence. E.g., in the example

we are using we get the following sequence

(15,11), (15.6). (12,7). (11.9), (11.4). (7,9). 7.6). (5.11),
(5,0). (0.4). (0.0).

The arranged nodes are denoted by W......W (w.-Q, w.-P). Applying (2),

find the values of f(w) for 8-2 k (f(w)«0) and draw the lines of

the length f(w). Write the numbers for f(w) above the corresponding
8 8

nodes w . The line with length f(w)-f(P) (in our example this is f(w11))

is the solution of the problem. This line is indicated on Figure 3 by arrows;

its length is equal to 3 units. This means that the total operation time

equal* A.+B -K^+DJ+EJ+3 ■ 18 units. From the optimal line It is easy to read

the optimal program which is presented in Table 3.

From the optimal program one can also read the optimal operation sequences

for each machine, which may be written as follows: A,. 2^» Bn 2V ^(\ 2V

D(l,2)' E(2.1)-

-9-

Alten 2

Item 1

Figure 3

Symbol C^. ** means that machine C will operate first Item 1 and then Item 2.

By a program we will mean also the set of operation sequences for all machines.

Table 3

Period

Item 1
Is

operated on
by machine

Item 2
Is

operated on
by machine

0—5 A -

5—7 B A

7—9 C A

9-11 C -

11—12 D C

12—13 - C

13—14 - E

14—16 E D

16—17 E B

17—18 - B

. ■^IxamilaaMiMM— m i ■ n i M—M—mi

-10-

.f •

i

Suppose the coordinate axes correspond to items 1 and J. If the line

(presenting an operation program) Is running between some rectangle, say F,

and an axis corresponding to Item 1 then the corresponding program will

contain a symbol F^. .v — which means that machine F will operate first on

Item 1 and then on Item J.

In [9] an approximate solution method is given (Illustrated by a 3 x 10

example) of the mxn problem. With this method one must first solve all (2)

possible mx2 problems by the method shown in this section. Given the (-)

optimal programs, then, considering each machine separately, one constructs a

program for the mxn problem (this is not always possible) and then presents

it graphically In the manner shown in Figure 1.

Item 2

was

Item 1

Figure 4

Let us Illustrate this procedure by a 4x3 example, which/mentioned

in Section 1 as given by Bowman in [4]. The processing order and operation

times are as follows:

Item 1 ~ A B C D

,AO 3
Item 2 — C A D B

Item 3 — D A .

T^"

-11-

Solving 3 problems — one for Items 1,2 and machines A,B,C,D, another

for Items 1,3 and machines A,D and a third for Items 2,3 and machines

A,D — by the method described in this section we get 3 optimal lines to

which there correspond three programs A.. 2VBn 2VC<,2 1 VDr2 1 "i ^see

Figure A); A^^^ and A(2>3),D(3j2). From A(1 j2).A(1)3),A(2>3) it

follows that the operating program for A is A^. 2 _y The operating

sequence for B and C as determined from the first of the three problems

Is B,, 2v and C,« -ty For machine D we get D^_ o 1 V ^0 we ^ave foun^

the program k*. _ 3\.B^1 2VCr2 IV0^"? 2 1"^ ^or t^e ^x^ problem which is

presented on Figure 5.

A i 1

2

J i_ 2 , 3 1

-4

1

l

B ,

C j.

t-
*

1

2 i

1

D i_ 3 L. 2

Figure 5

In general for the mxn case (m > 2, n > 2) we are not able to say

whether a given program is optimal without examining all programs

((n.1) in number). For our example, however, the program we obtained is

optimal. This follows from the fact that: a) the total operation time of

no program for the 4x3 problem is smaller than the minimal operation time

—'Remark: It is impossible to construct a program (such a program will be
called infeasible) if the solution of the second problem were A^- -v D,^ „%.
Then we would deal with sequences D,2 i v'Vl TV^fS 2^ from whicH it
is Impossible to derive a working plan*for machine Ö.

I
r;

-12-

of either aubproblem 4x2 and 2x2. b) The total operation time for the

problem is equal to the minimal operation time (24 units) of the 4x2 problem.

In [1] Akers and Friedman gave the following necessary and sufficient

condition for a program of an mxn problem to be feasible: If for items

1,2 k (k < n) the processing sequences are

1 2
for Item 1 -- ... M ... M ...

2 3
for Item 2 — ... M ... M ...

for Item k-1 -- ...Mk" ...Mk ...

k 1
for Item k -- ... M ... M ...

(the machines are then said to form a k-element cycle), then the feasible

program cannot be of the form

M (...2...!...) M (...3...2...)•••" (...k...k-l...)M (...l...k...)

This implies that for the Bellman-John son case there exist no unfeasible

program. This result Is due to the fact that there is no cycle since tha

passing order is the same for all items.

4 Solution of the 2xn Case.

1. There are two machines A and B and n items where the passing

order for item 1,2 n. is AB while for the remaining n2 items ,

n.+l,..., n (n1+n-=n) the order is BA (for n =0 or n^O we get the

2xn Bellman-Johnson case).

The production program is determined given A B where p as well

as q are permutations of numbers l,...,n. Let r=(l,2,... »n.) and

r= (n+l,...,n). Then the Akers-Friedman feasibility theorem for the 2xn

problem becomes: Program AB is feasible if and only if for any ier and

jer it is impossible for p and q to be simultaneously of the form

—a ■ mam ■ MM l l - - m i - M^MI».^—^

▼*'

•13-

P" (... i ... J ...), q» (... j ... i ...).

Let us denote by Q the set of feasible programs A B where the first n,
P q 1

numbers in p are elements of r while the first ru numbers of q belong

to r. The following theorem holds

Theorem 1: For each feasible program

A B there exists a program
P q K 6

A ^ B ^ that belongs to Q and

consumes no more time. (This will

be called a "no worse" program.)

Then either

Proof: Let A B e Q p q

P= (•••!»]■••) where ier, jgr or

q = (...i,j...), where ier, jer.

Consider the first case; here q must be of the form (...i j...)

but not of the form (...j...i. ..)

otherwise program A B would be unfeasible. Figure 6 illustrates program

A B .
p q

k A.
« 1 «

J-LL.
I B.
 i LL

Figure 6

Consider program A ,B where p' = (...j,i...) - (p* was obtained from p

by transposing i and j). This program shown on Figure 7 is feasible accord-

ing to the Akers-Friedman theorem.

A JL. *<• Al ■

B ll I M
I B.

J I li.

Figure 7

-14-

As seen from this figure program A ,B
p q

is not worse than A B .
p q

This can

be seen by observing that the time of finishing the operatiQn of parts i

and j on machine A are the same in both programs but one may finish the

operations of these parts on machine B applying program A ,B
p q

sooner than

in program A B .
p q

Let us turn to the second ca e: p must have the form (..• i, ... j •••)

where ier, jcr. In a way similar to the first case one may show that pro-

gram

A B •
p q

A B p q

than

A B 1 with
p q

q' - (••. j,i, •.•) is feasible and not wor s e than program

It is easy to define a procedure leading from any feasible program

to a feasible program which belongs to 0 and is not worse

A B This procedure will be described in an example.
p q

Let A B •A- - B- -p q (5,1,4,3,2) (5,1,4,2,3)

where the dashed numbers indicate elements of r while the remaining numbers

are elements of r.

For convenience write A B in the form p q

- (~·1·~·3,2)
5,1,4,2,3

Below, for instance , we show sequence of intermediate and feasible pro-

grams (each program being not worse than the preceding one) leading from

(:) to (::)e 0

(~· 1, 4. 3, }(~· 1, 3, 4, ~(~· 1, 3~ 2~ ~~(:· 5,
3, 2, ~ 5, 1, 4, 2, 5, 1, 4, 2, 3 5, 1, 4, 2, 3 5, 1, 4, 2,

/

}(~·
- - !}(::) • n --\~'

3, s. 2. 3, 2, 5, ~~c· 3, 2, 5,

4, -5, 1, 2. 3 5. 1, 4, 2, :;/ 5, 4, 1, 2,

-15-

Applying theorem 1 we restrict ourselves only to programs belonging to 0

(there may exist, however, optimal programs not belonging to O). All these

programs are feasible.

2. Let (p) be an arbitrary element of n. There are three cases
q

Case 1: E A • E Bi"
ier i

hl"'

Case 2: E Ai > J:_ Bi • w.
ier ier

Case 3: E Ai < E Bi.
ieF ier

Consider Case 1. Then (p) is an optimal program since t he correspond­
q

ing o eration time i s
y

max (E Ai , E B i)

hr+r hr+r

and there ex i sts no program with a smaller operation ime (see Figure 8).

A

B

Fi gure 8

The number of optima l programs i s equal to (n
1
!)2

(n2!)2
which is the

number of elements of the s et n.

Cons ider Cas e 2. Program is optimal if E_Ai > E Bi
ier icr

(Case 2)

f or then the t ot a l operation time equals E A and no program has a less
ier+ri

consuming operation time. Here, like in Case 1, we also have

opt im 1 programs .

YThe symb ol R + r means a union of sets r and r.

-16-

Suppose, however, that S A. < E B. (remember that E A. > ZB,).
ler ler ler IgF

To find an optimal program one must first solve a Bellman-Johnson

2xn. case where the processing order is AB but with an additional assump-

tion (assumption w) that machine B will start at least w units later than

machine A does.

Consider a 2xn1 case under assumption w and let () , ufv, be an

arbitrary program for this problem. The following is true.

Theorem 2. Program () or () is not worse than ().

Proof; It is obvious (see figure 9a and 9b)

/. ..jli... \
that f I is not worse

(b)

A A
 J I i_JL

I B, B.
J ■ i Li

Figure 9

It is easy to ' .op a procedure leading from any program

fA. ,. M fA to a not worse one[) or ()
Vj \7 VV

The following example Illustrates the procedure.

'u\ /l,4,3,5,2\ /l,3,4,5,2\ A,3,4.2,5\ /l,3,2,4,5^

1,2,3,4,5^ ^/v

"^! 1,2,3,4,5/ Vv

This completes the proof of the theorem.

- 17-

From now on we will consider only programs () which are elements of

Q but such that the elements of r appear in the same order in p as well

as in q. Denote the set of all such programs Q where Ö c Q. Now we face

an 2xn. Bellman-John son case, but with assumption w. Figure 10 shows

one of the possible programs for this case.

A . A3 . Al . A2 JL

B . W . Xl.i3_^ ll

Figure 10

We are to find a permutation u of numbers 1,... »n. such that the

operation time for program (j will be minimal. For such a program the total

idle time for either machine will also be minimal.

By x let us denote the idle time (in suitable time units) of

machine B after it completed item i-1 but before it starts to operate

on the next item (the i-1— item need not be the same as item i-1,

see Figure 10).

Without loss of generality however we may assume (for convenience) that

u« (1,2,... »n,). Then the i— item will be just item i. Also

x - max(A1-w,0),

x- " max(A1+A2-B1-x1-w,0),

x1+x_ = max(A1+A9-B1-w,x1) = maxi E A - EB.-w, Ex 1 ^ 1 ^ i i ^i=1 i i=1 i lal 3

Si ilarly . .

Z x - maxf EA - E B.-w, E x
1=1 1 \i-l 1=1 i=l

= max max (K -w,0) = max(max K -w,0),

•f
-18-

where
t t-1

K = E A - E B .
C i-1 1 i-1 1

The problem is to find such a permutation of elements 1,2 n. for which

the corresponding j)c is minimal. Note that K < w implies that the

corresponding idle time equals zero and therefore this permutation is

optimal. If, however, max K > w then the total idle time for machine B

is equal to max K - w.

It is obvious (since w is a constant) that a permutation is optimal

if max K is minimal.

Thus the problem reduces to one of finding a permutation with minimal

max K and this is Identical with the classical Bellman-John son case [7].
l<t<n1

t

To solve the problem one may apply Johnson's method as given in Section 2,

above. The optimal program (p) for Case 2 has the following properties.

1) (P) e 5
«I

2) the first n. elements in p and the last n. elements

in q are arranged according to Johnson's method.

3) The order of the remaining elements in p and q may be

arbitrary.

2
Set fi therefore contains (n«.') optimal programs.

Remark: if max S x < E _ A - E B.,
v icv ier+r i«r4-r

where v is an arbitrary permutation of n. elements

of r then the solution of the problem can be the

same as in Case 1.

•19-

Consider Case 3.

If in addition S B. > E A then, (p) Is an optimal program since the
ler ier q

corresponding total working time equals E B, which is minimal. Then,
let+f

2 2 like in Case 2, there are (n..') (n«.') optimal programs. Suppose that
i

E B. < E A. ■ w . In a way similar to Case 2 we come to the following
er icr

conclusion: The optimal program (H has the following properties.

the first n. elements of q and the last n« elements

of p are ordered according to Johnson's method (for

the 2xn2 case - with machines A, B, and parts ier)

the order of the remaining elements in p and q

is arbitrary.

Remark:

if max S x < E B. ^ E Ai ,
lev let+r ier+f

then the optimal solution can be the same as in Case 1.

(v is a permutation of n. numbers from the set r)

Corollary: Any program () posesslng properties 1,2, 3 is always

optimal.

•20-

Example: Consider a 2x7 problem with r »• (1, 2, 3, 4, 5) and

r ■ (6, 7). Then assume the following table of operating

times obtains:

Table 4

Ai B-

1

2

3

4

5

6

7

Consider an arbitrary program belonging to O, say program

7 3

3 2

2 1

1 1

2 7

3 3

1 2

(q
p)

1, 2, 3, 4, 5. 6, 7
6, 7, 1, 2, 3, 4, 5J

It Is easy to check (by drawing a program like that In Figure 1) that its

total operation time equals 22 units.

Here we have the second case because

Z Aj, = 15 > Z B = 4 and Z^ = 5 < E B1 - 14.
icr ie? icr ier

According to the solution procedure of Case 2 we solve the Bellman-Johnson

problem (machines A, B, items 1, 2, 3, 4, 5) and get two sequences 5,1,2,3,4

2, 2
2 (n-.1) optimal pi

5, 1, 2, 3, 4, 7, 6

2, 2
and 5,1,2,4,3. Therefore one can construct 2 (n-.1) optimal programs

belonging to Q. One of those is program
6, 7, 5, 1, 2, 3, 4,

with the

total operation time equal to 19 units (see Figure 11) .

-21-

A ■ 5 . 1 .2.3 .4.7. 6 .

B .-6.7. 5 .1.2 .8.4.

Figure 11

5 Solution of Some New Special Cases of the Bellman-Johnson Problem

There are three machines A, B, C and n Items 1,2 n, all to be

operated in order ABC. The operation times for the items are denoted, as

before, by A. ,B ,C while x. »Y., will mean, respectively, the idle times for

st machines B, and C. after finishing the i-1— item and before operating

on the i— item. Johnson proved that to find an optimal program one may

restrict one's self to programs of the type ABC where p is a per-

mutation of n numbers l,2,...,n. Therefore, we have to find a p such

that the idle time of either machine, say machine C, will ^e minimal.

Without loss of generality we may assume p - (1,2,... ,1,14-1 n)

A- Al . A2 . A3 .

B , 1 . 1 . 2. 2 . 3 3 .

r yl Cl y2 C2 y3 C3

Figure 12

Then (see Figure 12)

yl = Xl + Bl = Al + Bl

y2 = maxC^ + x2 + B1 + B2 - y1 - Cl,0)

and for any n
('n n n-1 n-1 \

E x + Z B - Z y - E C,,0) ,
1=1 1 1=] 1 1=1 1 1-1 /

Therefore,
n /n n n n-1
E y = maxf E x + EB - EC , E y

i=l \1=1 1 i=l 1 1=1 i=l

Find

■22-

n
E x .

Then (see Figure 12)

Xl " A1,X2 " max ^Al + A2 " xl " Bl' 0^

and
/" n-1 n-1
ll, Ai - E xi - E Bi, 0

Therefore

x ■ maxi
n y-l 1-1 *■ 1-1

n / n n-1 n-1
Ex- max! E A - E B. , Ex).

1-1 \1-1 1-1 1-1

By K denote
u i u u-1

Then

E A. - E B., and let X - E x..
1-1 i 1-1 i u 1-1 i

X - max (K ,K ,). n n n-1

This implies

X1 - ^ (bo X0 - 0), X2 - max (Kj,^), X3 - max [K^maxd^.l^)] -

- max [K., KJ, K.].

In general
u-1 1

x E A - E B I .
^i 1-1 1-1 I

X - Ex« max, K - max
n 1-1 1 l^i<n u l^i<n

By H denote
v i v v-1

E B. - E C ;
1=1 1-1 1

Then
n
E y. - max(H + max K , H . + max K ,... , H, + K,)

1-1 1^LI<^ Ku^i

- max (H + K) - g (p) (4)

I
-23-

Ranark: This problem may be solved in a different way by fixing the end

moment of the operation program (Instead of fixing the starting moment) and

then looking for a program with a minimal operation time, with time running

In an opposite direction. The problem then reduces to one of minimizing the

total Idle time for machine A. Permutation (1,2,...fn) will then, In fact,

mean permutation (n,n-l,...,1). The formula for the total Idle time of

machine A becomes
max (Hv + Ku), (5)

where
v v-1 u u-1

H - Z B - E A , K - E C - E B .
1-1 1 1-1 1-1 1 1-1 1

The graphical presentation of such a program differs from the one given In

Figure 12 In that on the first row we present the working plan of machine C

(which Is working non stop) while the third row corresponds to machine A.

Formula (5) may be obtained In a straightforward manner from (4) by

replacing A. ly C. and vice versa.

Take a permutation p' - (1,2,... J-l, j+1,j , j+2,... ,n) which emerges

from p by transposing j and j+1. Consider

g(p) - max (Hv + Ku) , g^') - max (Hj + K^).
l<u<v<i l^u^Kii

It is easy to see that K = K* and h - H1 for each u and v different 1 U U V V

from j and j+1. Examine the expressions

L = maxOlj + Ku, 1 £ u ^ j; Hj+1 + Ku, 1 < u < j + 1)

R - max(H! + 10, l<u<J; H' +1^, l<u<J + l).

It is clear that if L=R then g(p) - g^') while the inequality L < R

implies g(p) <g(p,) (the equality g(p) - g(p,) holds only if Hv + Ku

attains its maximum for u and v which differ from j as well as

from j+1).

-24-

We may therefore restrict ourselves to consider L and R only. First

determine numbers K', K* , Hi, H! .. The following hold

j-l
E B. = K. - A. + A..,,

i.l i J J J+1

j+1 j-l
KI^i = Z A, - E B, - B.^. = K,^. + Bs - B.^,,

j+1 1=1 i i=l i J+1 j+1 j J+1

j-l j-l
Hi = E B. + B.^. - E C. = H, - B. + B.^.,

j i=1 i j+1 i=1 1 J J J+1

j+1 J-l
H,..= E B, - E C, -C.I1

=
H.I1+C, -C,,,

j+1 i=1 i i=1 i J+1 J+1 J j+1

Replace in R the thus determined values of Kl, Kl . , Hi, Hi ...

Then

L = maxCH.+K, ,... ,H. + K. . ,HS+K. ; H^.+K. ,... .H.^+K, . ,
J 1 J j-l j J j+1 1 J+1 j-l

VI^J'V^V^

R = max (HJ-BJ+BJ^+K^... ,H -B +B +K j,

Hj-Bj+Bj+1+Kj+Aj-Aj+1

H
J+I

+C
J"

C
J+I

+K
I""

,H
J+I

+C
J"

C
J+I^^-i' Vi^j^j+i"*"

+Kj-Aj+Ai+1. HJ^+CJ-C^^K.^+BJ-BJ^).

By substracting from L and R the same value

j+1 j-l
E B - E C, = H. . + C, = H. + B.^.

i=l i 1=1 *■ 1+1 $ * J+1

we get new expressions. Call these L1 and R1 where

L' -maxCK^..... K.^B^, Kj-B^;

1 4 •'* ' • i-1 4 ' ^1 4 ' ^i+l i ' (6)

-25-

R' - maxCKj-B K -B , K -B +dA;

^^i+i ^-i^j+r Kj"Vi+dA' Vi^j+r0^'

where dA - A.. -A,, dB » B.^-B.. J+l 1 j+l J

The Inequalities L' < R* and L < R are equivalent.

We will prove the following

Theorem 3. The optimal permutation p (the permutation p of the
optimal program ABC) is to be constructed according

P P P ö

to the following rule: Element j must appear before
element J+l —I.e., p = (. .. J ,... J+l...)—if for each
i ■ l,...,n, j«l n-1 one of the following conditions
holds.

l:a) Bj < Bj+1. b) AJ+BJ < AJ+1+Bj+1. c) BJ+CJ > Bj+1+Cj+1.

2:a) B1 > Cj. b) Cj > Cj+1. c) BJ+CJ > Bj+1+Cj+1. d) AJ-CJ < Aj+1-Cj+1.

3:a) B1 > Aj. b) Aj < Aj+1. c) A^ < Aj+1+Bj+1. d) AJ-CJ < AJ+1-Cj+1

for J=l ,2,... , n .

Proof; Transpose two elements J and j+1 in an arbitrary permutation
p of n numbers l,...,n. Denote the new permutations
by p'. Without loss of generality we may assume p=(l,...,n).
Then p1 = (1,. • • ,J-1,j+l,J , j+2 n)

I. If p satisfies condition 1, then L* < R1, since for each
r = 1,2,...,2J+l the rth element of L1 is less than the
rth element of R*. We will show this only for r =j,2j ,2j+l.

since the proof for all remaining r is obvious (see
assumption la, 1c)

For r=J: K - B . < K - B + dA = K " B + A 1 - A . Hence we get

AJ+BJ < Aj+1 + Bj+1 which holds because of lb.

For r»2j: K -C. < K. - C . + dA = K - C . + A . - A which implies

the relation to be proved -- viz. ,

AJ + CJ+1 < AJ+1 + CJ

■v

- 26-

From 1c it follows that B. + C, + A, . >B. . + C.., + A,., while lb
j j J+l j+1 J+l J+l

implies A. . + B j + C . > A + B + C .. Applying the last two results

we get

and consequently

V VW VVVi-

VI
+

C
J
>A

J
+
 VI • Q-e-d-

For r.2J+l: Kj+1 -C^Kj^ -CJ+1 -B^ + Bj hence

Vl + Cl+1 <
B3 + CJ-

This Inequality is true in view of 1c. Thus we have proved that if p

satisfies condition 1 then L1 < R1 which in turn implies g(p) < gCp')»

The relations given by condition 1 are transitive. Consider, say,

relation A, + B < A .. + B. ... It is easy to see that for any

i,j ,k » 1,... ,n , i |< j ^ k, the inequalities A. + B, < A + B and

A. + B, < A, + B. imply
j j k k

A. + B, < A, + B. .
i i k k

The proof of transitivity for the other relations goes in a similar way. The

property of transitivity implies the existence of a procedure for constructing

a sequence of permutations starting from any given permutation and continuing

to the optimal one in such a way that the corresponding numbers g(p) form

a nonincreasing sequence.

Let us illustrate this procedure by an example. Suppose that from 1

we have the following relations (i ->J means that i precedes j)

-27-

1 - 2, 1 - 3, 1 - 4, 1 - 5, 2 - 3, 2 - 4, 2 - 5, 3 - 4, 3 - 5, 4 - 5. (7)

Consider a permutation (2,4,3,1,5) = q. The first "disorder" in q

(looking from the left side) is 4,3 (according to (7)). Therefore permu-

tation p is at least as good as q since g(p) < g(q)- Removing the next

"disorder" in p we get another permutation not worse than p, and so on.

Thus the following sequences emerge

q = (2,4,3,1,5), (2,3,4,1,5). (2,3,1,4,5), (2,1,3,4,5), (1,2,3,4,5) = p.

Permutation p is optimal since for any permutation p: there exists a

sequence of permutations p',...,p, where g(p') >..• >g(p)> which implies

gCp') > g(p) Q.e.d.

The rule for finding the optimal permutation under condition 1 is the

following: Arrange numbers B...., in a nondecreasing sequence. The

sequence of the corresponding indices is the optimal permutation.

Since we don't know, a priori, whether condition 1 holds, the following

procedure is therefore proposed. Form sequences [B.], {A. + B,} and

{B + C.} , the first to be nondecreasing and the last to be nonincreasing.

If all three sequences which form the corresponding indices are identical,

call them p , then, condition 1 holds and p is the optimal permutation.

II. We shall prove the theorem in the case where condition 2 holds
(the proof of the theorem under condition 3 goes in a similar
way since condition 3 can be obtained from condition 2 by
replacing the symbols A. by C. and vice versa and by changing

the direction of inequalities.).

We are to show that L1 < R1.

-2B-

RE:mark: the th term in Ll for each 1 ~ r < j is not greater r-

than the j + ~ term of L I. the th term of R' for r-

for 1 < r 5 j-1 is less than the j + ~ term of Ll

while the j-th term of R1 is less than the 2jth term

of R 1
•

To prove that L 1 < R' it is sufficient to show that the th r- term

of L1 for j $ r $ 2 j+l is less than the th r- term of R 1 • The proof

will be shown only for r = 2j ,2j+l since for the remaining r the proof

(see condition 2b) is trivial.

For

which lea ':£s t o

This inequality holds in view of condition 2d.

For

BJ+l + cJ+l < BJ + cJ

and this also holds in view 2c.

which implies

In a way similar to the earlier development, one can show that conditions

2b, 2c, 2d, are transitive which implies that p is an optimal permutation

provided it satisfies condition 2. To find the optimal permutation arrange

numbers 1, •.. ,n in such a way as to satisfy conditions 2a, 2b, 2c, 2d. If

in each case we get the same sequence, say p, then p is the optimal per-

mutation.

'nle following theorem holds:

Theorem 4: Let ~in (Ai +C.) = A + Cj • If for each i,j•l, ••• ,n
li,jP J io o

Bi ~ max (Aj,Cj) th en any permutation of the form

(i , ..• ,j) , (j , ... ,i) is optimal.
0 0 0 0

-29-

Proof: Denote p= (i ,...,i) , p1 » (1 ,....i). Permutation p " o o o o
as well as p' is optimal because the corresponding

operation time for program ABC as well as for
P P P

A |B tC , is equal to
P P P

n
E B, + min (A, + C.)

1=1 * i=fj * J

and no other program has a smaller operation time.

Example. Consider a 3x5 Bellman-Johnson problem with the following

table of operation times (Table 5)

1

2

3

4

5

*;
Ci

4 3 15

6 7 8

7 7 8

5 9 4

6 5 10

Table 5

To check whether condition 1 holds form the following table (Table 6)
AJ+BJ^ BJ Bi+Ci

1

2

3

4

5

7 3 18

13 7 15

14 7 15

14 9 13

11 5 15

Table 6

Arranging the items in a nondecreasing sequence of B. we get two permu-

tations (1,5,2,3,4) and (1,5,3,2,4). Arranging the items in a nondecreas-

ing sequence of A^+BJ
we obtain two sequences (1,5,2,3,4) and (1,5,2,4,3),

while arranging B.+C. in a nonincrensing sequence get six permutations --

among them (1,5,2,3,4) which is the only one appearing in each case.

^i^MM^k^Mi^ MM

-'Ar

-30-

Therefore (1,5,2,3,4) is the optinml sequence.

6 The Sequencing Problem With a Time Lag.

The problem considered in thin section is a generalization of the 2xn

Bellman-Johnson case which is obtained by Introducing a condition under which

there must be some waiting time of at l^ast D - A duration for item 1

after it is finished on machine A and before it starts on machine B.

(The processing order is AB for all the items). The case when, for all

i, D. ~ A < 0, reduces to a classical Bellman-Johnson problem. The pro-

blem considered by Mitten in [8] is also a generalization of the Bellman-

Johnson case. The problem considered here, however, is not a special case

of Mitten's problem, or vice versa. Indeed Mitten introduced time lags

because he assumed that the same item can be handled by two machines

simultaneously.

Remark: The Johnson procedure (as well as the notations) are similar
to that in [8].

By A, ,B ,D -A , denote operation times and idle times for item i.

Let t! and t be the corresponding instant when item i starts on

machines A and B, respectively. If item i-1 is operated on just before

item i, then

ti = max(ti_1 + B^, t^ + Ai, t| + D^. (9)

If by x, we denote the idle time fur machine B after it has finished

item i-1 but before it starts to operate on item i, then

xi= ^ " Vi ■ Bi-i- <10)

!♦■ is easy to show (the proof is similar to that one of theorem 2) that one

may restrict attention to programs of the type A B since at least one

optimal program must be of this type. Therefore, we are to find a n

-31-

element permutation p of numbers l,...,n which will minimize the total

operation time T(p) of program A B where
P P

T(p) - E B1 + E x^^
iep iep

Since
n

LB- E B
i«P i-1

is constant the problem reduces to one of finding a permutation p for which

the total idle time of machine B

E xi - g(p)
iep

will be minimal.

Divide the set (1 n) into two disjoint subsets s and s' where

s - {(i) | Ai-Bi = E1 < 0) and s' = ((i) | Ei > 0}.

Suppose s consists of t elements while s' consists of n-t elements. The

following theorem holds.

Theorem 5. If the first t elements of the permutation

p* « (il, i2,... ,i ,i ,...,1^) belong to s while

the remaining n-t numbers are elements of s' and

if the following relation holds

maK(A ,D) < max(A, ,D) < . . . < max (A ,D)
ll ii i2 h " ~ 11

as well as

max(B ,D - E.) > maxCB, ,D - t,) > ...
l+l l+l l+l 1+2 1+2 ^1+2

> max(Bi ,Di - Ei)
n n n

then p* is the optimal permutation«

llAtf^Mal^aaaaB>^a

•32-

Proof; Consider a permutation (1,2,...tn). One may assume tl ■ 0

and t. = x . Applying (8) and (10) we get

u-1 u u-1
t' - Z A^, t = S x. + E B, for i - l,2,...,n u iu i i

i-1 i=l i=l 1

since: t^ = xi + t:i_i + Bi-i » 'i " xi + ^-

2
t- = x- + t + B. = E x. + B and so on).

Therefore
u u-1
S x. - t - IB. (11)

i=l 1 U i-1 i

u-1
From (9) we find t (t* = E A.)

U U i=l i

u-1 u-1
t = max(t . + B , , E A. + A , E A, + D). u ^ u-1 u-] ' ^ i u* i u

u-1 u-2
t = E xJ + E B, ,

U'"1 i-1 i i-1 i

therefore
/u-1 u-1 u u-1 \

t - max (EX+ZB., EA, EA,+D) .
u \i-l i-1 i-1 i-1 y

Applying this result in (11) we have
u /u-1 u-1 u-1 u u-1
Ex- max (E x + E B - E B E A. - E B. ,

i-1 \i-l i-1 i-1 ' i-1 i-1

u-1 u-1 \ /u-1 u-1 u-1 \
E A - E B >D) - X = max I Ex., E E^+A , E E +D] .

i-1 i i-1 i 7 U \i-l i i-1 i U i-1 i V
Formula (12) implies X, = max (O^Aj^, OfD.) - max(A1,D1).

Since

(12)

■33-

Similarly,

X2 - maxCmaxCAj.Dj), (Ej+A^^+D)]

maxCCA^D.), (E.+A«), (E.+D»)] - max
1 l<u<2

u-1 u-1
E E,+A , Z E.+D

1-1 1 U 1-1 1 U

In general:

X = max
n l<u<h

u-1 u-1
T. E.+A , E b.+D

1-1 1 U 1-1 i u
8(p). (13)

Consider an arbitrary permutation p ^ p*. We will show

that g(p) > g(p*)' Without loss of generality we may assume

that p - (l,2t...,n). Since p ^ p* it follows that p does

not satisfy the assumptions of theorem 5. Therefore, there

must exist in p two neighboring elements, say J and j+1,

such that one of the following cases holds

(a) j,j+l es'

(b) j,j+l e s«

(c) j e s', j+1 e s

It will be shown that p1 - (1,2,...,j-l, j+l,j, j+2,... ,n)

satisfies condition g^') < g(p)- Let

and max(A.,D.) > max(A. , ,D ,)

and max(B ,D -E)< ...ax(BJ+1 ,D -Ej+1)

u-1 u-1

u
E E.+A , and Q = E E>D .

i-1 i U U i-l i U

Then

g(p) - max [PU.QU]. and g(p,) - max [P^.Q^],
l^u^i l^ll^l

where
Pu ' ^u " Qu for u ' 1'2 J-1.J+2 n

p] '^VVi' Q
J

=
ii

:
1
Ei+Vi' p]+i \^

Ei+E^i+ AJ'
Q' - E E,+E,., +D,

CJ+1 i=l
Ji "J+1 ~i

There are two cases: either g(p) = max(P , Q , P,.,. Q1+i) or

g(p)4 max(Pj,Qj,P.+1.Qj+1).

•34-

In the first case g(p) = g(pf) which implies gCp') < g(p).

Consider the second case. We are to show that

max (Pj. Q!. P'+1, Q'.+1) <max(P.. Q. . P .+1. Qj+1).

i.e. that the following inequality holds

max

< max

j-l j-l
T. E +A , E E. + D

i=l J i=l

j-l j-l
E E.+E., .+A. , E E^+E. . ,+D,

i j+1 ,_i ! J+l i=1 i J+l J i=1 i J+l J

J-l j-l j j "I
EE.+A,, EE.+D., EE.+E.+A... E E.+E.+D.,.

i=l ^ J i=1 ^ J i=1 ^ J J+l i=1 ^ J J+lJ

j-l
Subtracting E E. from both sides of the last inequality we get

i=l 1

— (Aj+1.Dj+1.Ej+1 + ArE.+1 + D.) < niax(AJ.D..YAj+1.Ej+Dj+1).(l4)

Denote by L and R the left and right hand side of (14)

Consider case (a)

According to the assumption in the theorem E. < 0 and E.,,<0.

Therefore

Vi > Wi'Vi> Wi'Aj > VI
+A

J
and D

J
> E

J+I
+D

J-
Inequality L < R will be true if

max(A j.D) < max(A ,D). (15)

But (15) holds in view of the assumption of the theorem. Therefore

L < R which implies gCp') < g(p).

Consider case (b).

It is assumed E. > 0 and E..., > 0 . This implies

Aj ^ Vi+Ai' D
J ^ W' Vi ^ Wiand Vi - Wi-

Relation L < R holds if

max(E.+1+A ,E j^ + D) < max(E +A^ ,E +D).

Subtracting E. + E, . from both sides we get

max(Aj-ErDj-Ej) < -ax(Aj+1-Ej+1 ,Dj+1-EJ+1).

■▼■•»-

■35-

Thls may be wrli.cen In the form

maxCBj.D -E) < niax(Bj+1,D -Ej+1). (16)

Since (16) holds, by assumption, it follows that L < R and

g(pl) < g(p).

Consider case (c).

By assumption E, > 0 and E. , < 0 which leads to
j - J+l

VJ ^ Wi ' Vi ^ EJ+DJ+I • Wi< AJ • W < Dj-

This in turn implies ^ ^ R . gCp') ^ g(p)- Thus we have

showed that if permutation p satisfies one of the conditions

(a), (b), (c) then there exists a permutation p' which emerges

from p by transposing two neighboring elements of p and where

8^') < 8(P)- This implies that for any permutation p 4 P*

there exist at least a finite sequence of permutations

P.P'.P" P* with g(p) > g(p') > g(p") > ... > g(p*) where eacli permu-

tation of the sequence is constructed from the preceding one by

a transposition of two elements. Permutation g(p*) is optimal

since for any permutation p, g(p) > g(p*).

Example; Consider a 2x5 problem with the following data (Table 7)

B.

1

2

3

4

5

Di E, D -E max(Ai,Di) max^J^-E^

3 2 3 1 2 2

2 4 2 -2 4 2

1 5 U -4 8 4

4 3 2 1 1 3

3 4 1 -1 2 3

Table 7

-— -- -^-*«^^-—^^-»x»—MJfc-

-36-

Here s = (2,3,5) and s' = (1,4). According to theorem 5 in the optimal

sequence: 1) elements 2,3,5 appear before elements 1,4. 2) the numbers

2,3,5 are arranged so that values max(A ,D.) form a nondecreasing sequence,

3) the numbers 1,4 are arranged in such a way that max(B. ,D -E.) form

a nonincreasing sequence.

Therefore, permutation q =(2,5,3,4,1) 's optimal. Figure 13 shows

the working schedule of program A B .

A . 2 , 5 ,3, 4 , 1 ,

B t—i , 1 I ^ ■ 1 ,

Figure 13

Remark; If D <A for each i=l,...,n then as mentioned, the

problem reduces to a classical Bellman-Johnson case. Then

according to (9) t, becomes t » max(t .+B, _. »t'+A.).

For this case the inequalities appearing in the statement

of theorem 5 will be as follows

A. < A < ... < A , B < B < • • • < B ,
11 2 Xl Vl -6+2 n

since

max(A ,D) = A and max(B ,D -E) = max(B ,D -A +B) ■ B •
• ^ W Li ll> L> t I Ir t V

This implies a rule of constructing an optimal sequence,

which rule was stated in Section 2.

7 Some Properties of the Approximate Solution Method of the mxn Case.

In Section 3 an approximate method of solving the mxn case was given.

We will show that this method is an exact method for the problems presented

in Section 2.

Consider the 2xn Bellman-Johnson Case. According to the method men-

tioned, one must first solve (») different 2x2 problems for each

-37-

T*

1»j " A,. ..,n , 1 7 J by the method given in Section 3. Consider one of the

2x2 cases (see Figure 14).

Itim i
Figure 14

It is easy to see that the optimal line can only be either one of the two

(Indicated on Figure 14 by arrows) linking P and Q. The lower line corres-

ponds to the program A, . B, . while the upper line corresponds to the

program A(.)i)B(j>i).

By z and z' let us denote the total length of all vertical segments

corresponding to the lower and upper line (this is the total waiting time for

Item i in the 2x2 problem) Then (see Figure 14)

z = B + max (0, A - B^,

z1- A. + max (0, B - A.).
j j

The sufficient condition for the lower line to be optimal is

B + max(0, A - B^ < A + max(0, B - A^.

where an equality sign may also appear. This inequality may be rewritten as

max(B , A + B - B^ < max (A , A. + B - A^.

Subtracting A. + B. from both sides we get

max(- A , - B) < max(- B , - A^.

which after simple transformations becomes the equivalent form

min(A , B^ > min(Ai, B). (17)

Mk

:■» .

-38-

Condition (17) is identical with that of Bellman-Johnson (see [7]). Since

(17) is transitive we will get from the (_) problems of the type 2x2 a

solution of the 2xn problem identical with the optimal solution obtained

by Johnson's method.

Remark: One may derive condition (17) directly by looking for
a line for which the total length of the 45° segments is
maximal. Let us denote such a length for the lower and
upper line by z and z' respectively. Then (see Fig. 14)

z = min(A , B.) , z' = min(A,, B,). i' ~j

The lower line represents an optimal program if

min(A., B) > min(A., B),

which is identical with condition (17).

Consider a 3xn Bellman-Johnson case while additionally assuming that

for each i,j = l,2,...,n , at least one of the relations B, < A ,

B < C holds.

Here we consider („) different 3x2 problems. Take one. of those
may

for items i and j, say, (see Figure 15). According to Johnson in [7] we/

look for an optimal program among programs of the type ABC. This

implies that one can find the optimal line by examining only two lines as

presented on Figure 15.

item i

Figure 15

-39-

Let us denote by w and w' the totnl length of the 45 segments of the

lower and upper line respectively. Then (see Figure 15)

w = min(B + C , A + B),

w = min(A. + B, , B. + C.).
i i J j

So if w > w1

mln(B. + C., A + B) > min(A + B , B + C.), (18)

then the lower line is optimal and this means that program A-., .v B, ,.
\i»J/ \i»J/

Cf. .v is optimal. Condition (18) is identical with that given by
\i i J /

Johnson in [7].

The transitivity of (18) implies that the mxn method always solves

the 3xn Bellman-Johnson case under the condition B < A or B <C..

One can easily show that this method solves the 3xn Bellman-Johnson case

when B. > max(A ,C) for each i and j as well as the 2xn case

from Chapter 4.

-40-

Refcrcnces

[1] Akers, S. B. , J. Friedman, "A Non-numerical Approach to Production
Scheduling Problems." Operations Research, v. 3, pp. 429-442 (1955)

[2] Akers, S. B. , "A Graphical Approach to Production Scheduling Problems','
Operations Research, v.4, pp. 244-245 (1956).

[3] Bellman, n. , "Mathematical Aspects of Scheduling Theory,"
Journal of the Society for Industrial and Applied Mathematics,
v. 4, pp. 168-205 (1956).

[4] Bowman, E. W. , "The Schedule-Sequencing Problem," Operations Research
v. 7, pp. 621-624 (1959). """'

[5] Dantzig, G. B. , "A Machine-Job Scheduling Model." Management Science,
v. 6, pp. 191-196 (1960).

[6] Gomory, R, E. , "Outline of an Algorithm for Integer Solutions to
Linear Programs!' Bulletin of the American Mathematical Society,
v. 64, pp. 275-278 (1958). "'"""'

[7] Johnson, S. M. , "Optimal Two and Three Stage Production Schedules
with Set-up Times Included," Naval Research Logistics Quarterly,
v. 1, pp. 61-68 (1954).

[8] Mitten, L. G. , "Sequencing n Jobs of Two Machines with Arbitrary
Time Lags," Management Science, v. 5, pp. 293-298 (1959).

[9] Szwarc, W. , "Solution of the Akers-Friedman Scheduling Problem,"
Operations Research, v. 8, pp. 782-788 (1960).

[10] Wagner, H. M. , "An Integer Linear Programming Model for Machine
Scheduling," Naval Research Logistics Quarterly, v. 6,
pp. 131-140 (1959).

Unclassified
Security Clnssificition

DOCUMENT CONTROL DATA • R&D
(Sxcurlty elmtolllctHlon ol llllm, body ol mhmtimct mnd Indttlnt annol»llon mutt 6» on(«r»rf <vttmn Ihm o*»tall lepoil I» cl»flll*d)

I ORir.lNATlN G ACTIVCY fCofyior««» »uihof; 2* nrPonT secum Tv c LAssiric* TION

Graduate School of Industrial Administration
Carnegie Institute of Technology Unclassified

26 anoup

Not Applicable
3 REPORT TITLE

ON SOME SEQUENCING PROBLEMS

4 DESCRIPTIVE NOTES (Typ* el nporl mnd Inelumly daft)

Technical Report, July, 1967
S- AUTHORfS) fLail nom*. Ilflnmm; Inlllml)

SZWARC, Wlodzimierz

6 REPORT DATE

July, 1967
7«' TOTAL NO. OF PAOC*

40
76. NO. OF REFS

10
0a. CONTRACT OR ORANT NO.

NONR 760(2<)
b. PROJECT NO.

NR C47-04P

9m. ORIOINATOR'I REPORT NUMBERfSJ

Number 103
Management Sciences Research Report

96. OTHER REPORT NO(S) (Any olhmr numbtrm Ihml mmy bm mtmlenmd
thi» nport)

none

10 A VA 1L ABILITY/LIMITATION NOTICES

Distribution of this document is unlimited

II SUPPLEMENTARY NOTE»

none

12 SPONSORING MILITARY ACTIVITY

none

i3. ABSTR^fjT^ (mxn) sequencing problem may be characterized as follows:
There are m machines which can produce a piece consisting of n parts.
Each part has a determined order in which it is processed through the
machines. It is assumed that each machine cannot deal with more than
one part at a time and that the processing required for each part can
be accomplished only on one machine. That is, the machines are all
specialized so that alternate machines for the same processing on a
part is not possible. The problem is to find the best production plan
consisting in sequencing the different parts so as to make the whole
amount of time from the beginning of work till the piece is completed
the shortest possible. Such a plan is called an optimum one. In the
first 4 sections of this paper, the problem (2xn) is solved for the
(2xn) case in which the order in which parts come on the machine is
not constrained by futher assumptions. The remainder of the paper thei
takes up: i, the (3xn) problem of Bellman-Johnson (viz. the technolo-
gical processing order through the machine is the same for all parts),
for several new special cases; ii, the 2xn problem of sequencing when
delay times must also be considered; and, iii, some properties of an
approximating method for solving (mxn) problems, including a delinea-
tion of cases when the approximating method will yield optimal solutior

DD FORM
i JAN S4 1473 Unclassified

Security Classification

- M --

■^•r

Unclassified

Security Clnssificntion
14.

KEY WORDS

Sequencing
Production Scheduling
Machine Lording
Job Shop Scheduling
Linear Programming
Integer Programming
Graph Theory

LINK A

/»OLE

LINK D LINK C

INSTrtUCTIONS

V. ORIGINATING ACTIVITY; Enter Ihe name and addreaa
of the contractor, aubconlractor, grantee, Department of De-
fense activity or other organization (corporal» author) laaulng
the report.

2a. REPORT SECUMTY CLASSIFICATION: Enter the over-
all aecurity classification of the report. Indicate whether
"Restricted Data" Is Included. Mnrklng is to be In accord-
ance with appropriate security regulations.

26. GROUP: Automatic downgradlnR is specified In DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title In all
capital letter». Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title clanslficatlon in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period Is
covered.

5. AUTHOR(S): Enter the name(s) of authors) aa shown on
or in the report. Entei last name, first name, middle Initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATE; Enter the date of the report as day,
month, year; or month, year. If more than one date appeara
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGt;? The total page count
should follow normal pagination procedures. I.e., enter the
number of pagr-i containing informntioiv

76. NUMBER OF REFERENCES: Enter the total number of
references citod in the report.

8o. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written

86, 8c, fit 8d. PROJECT NUMBER: Enter the appropriate
military department identification, auch as project number,
subproject number, system numbers, task number, etc.

9«. ORIGINATC R'S REPORT NUMBER(S): Enter the offi-
cial report nurr'<er by which the document will be identified
and controlled by the originating activity. This number muet
be unique to this report.

96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by Ihe orlßmalor
or by Ihe sponxor), also enter this number(n).

10. AVAILABILITY/LIMITATION NOTICES: Ei.icr any lim-
itations on further dissemination of the report, other than those

Imposed by security classlfU- .lion, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
rrport from DDC"

(2) "Foreign announcement and dissemination of this
report by DDC Is not authorized."

(3) "U. S. Government agencies may obtain copies of
this rrport directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(5) "All distribution of this report Is controlled. Qual-
ified DDC users shall request through

If the report has been furnished to the Office of Technical
Services, Department of Commerce, lor sale to the public. Indi-
cate this fact and enter the price, if knnwiv

11. SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing lor) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document Indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an Indication of the military security classificstion of the in-
formation in the paragraph, repreaented as frs;. (S), (C), or (U)

There Is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 22S words.

14. KEYWORDS: Key words are technically meaningful terma
or short phrases that characterize a report and may be used as
Index entries for cataloging the report. Key words must be
selected so that no security classification la required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used aa key
words but will be followed by an indication of technical con-
text. The assignment of links, roles, and weights la optional.

Unclassified
Security Classification

■MMtoUlMMMrihMBMMi mm

